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Table I 
Summary of the  CVMO’s Derived from the Polyhedral Skeletal Electron Pair 
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relationship 
polyhedral type CVMO’sasb between F and V examples 

electron-precise or cubic polyhedra 1 5 V / 2 ( V > 4 )  V = 2 F - 4  Ir.,(CO),,, Ni,(PPh),(CO), 
closo deltahedra 7 V  + 1 ( V >  5 )  F = 2 V - 4  os, (CO), <z- 
nido deltahedra 
arachno deltahedra 

7 v t  2 ( v > 4 )  F = V (pyramids) o s , c ( c o j , ,  
7 V  + 2 ( V >  4 )  Fe,H(CO),,--butterfly geometry 

Condensed Polyhedra Derived from Components with V I ,  (CVMO),, and V,, (CVMO),, Vertices and Cluster Valence Molecular Orbitals’ 
vertex sharing: edge sharing: triangular face sharing: 

(CVMO), + (CVMO), - 9 (CVMO), t (CVMO), - 17 (CVMO), + (CVMO), - 2 4  

a V = number of vertices; F = number of faces; CVMO = number of bonding cluster valence molecular orbitals.’ The number of skeletal 
electron pairs ( N )  is related to CVMO by N = CVMO - 6 V ;  e.g., for electron-precise polyhedra N = 15 V/2 - 6 V  = 3 V/2, for closo deltahedra 
N = 7 V  + 1 - 6 V =  V t 1 ,  etc. 

tron-precise polyhedra or cubic polyhedra and are characterized 
by 15V/2 CVMO’s. Since for these polyhedra V = 2 F  - 4, then 

C V M O  = 15V/2 = 8 Y -  Y/2 
= 8 V - F + 2  

I.e., X in eq 1 must equal 0. 
Rule 2: Capping an N-gonal Face of a Polyhedron Leads to 

an Increase of Xby N- 3. In the PSEPT, the capping principle 
has been widely used6 and states that the CVMO increases by 
6 on capping a face with a single atom. Since this process increases 
V by 1 and F by N - 1, it then follows that X must increase by 

Rule 3: X = 0 for All Pyramids. In the PSEFT, pyramids are 
examples of nido clusters3 that are characterized (Table I) by 7V + 2 CVMOs.  Since for pyramids F = V, the following is true: 

C V M O  = 7 V +  2 = 8V-  V +  2 
= 8 V - F + 2  

N - 3 .  

Le., X must equal 0. 
Rule 4: For Bipyramids X = 0 (or 2) for Trigonal, X = 1 (or 

3) for Tetragonal, and X = 3 for Pentagonal. In the PSEPT, 
bipyramids are examples of closo clusters with 7 V + 1 CVMO, 
and for these (and all deltahedra) F = 2V-  4; therefore 

C V M O = 7 V + 1 = 8 Y - V + 1  
= 8 V - F - 2  

I.e., X = ( F  - 6)/2. In this manner X = 0 for a trigonal bipyramid 
( F  = 6), X = 1 for a tetragonal bipyramid ( F  = 8 ) ,  etc. The 
possibility pointed out by Lauher’ that some of these bipyramids 
may distort to accommodate 7 V  + 3 CVMO’s leads to the al- 
ternative values of X given in parentheses above. 

Rule 5: X =  1 for a Trigonal Antiprism, X =  1 or 3 for a Square 
Antiprism, and X = 3 for a Pentagonal Antiprism. Therefore, the 
values of X in this rule reflect the designation of a trigonal an- 
tiprism (octahedron) as closo and a pentagonal antiprism as ar- 
achno and the ambiguous designation of a square antiprism either 
as closo derived from a dodecahedron by minor distortions* or as 
an arachno bicapped square antiprism. 

Rule 6: X = S for Vertex or Edge-Sharing (Connected) 
Polyhedra, Where S Is the Number of Shared Vertices or Edges, 
Respectively. Recently, the PSEPT approach has been extended 
to condensed polyhedral  cluster^.^ For a pair of cubic polyhedra 
sharing a common vertex, it can be demonstrated9 that CVMO 
= 15( V + 1)/2 - 9. For such polyhedra V = 2 F  - 9; therefore 

C V M O  = YZ(16Y- V -  3) 
‘/2(16V- 2 F  + 6) 

= 8 V - F + 3  
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Le., X = 1, the number of shared vertices. A similar analysis leads 
to X = 1 for edge-sharing cubic polyhedra. 

Given that nearly all polyhedral carbonyl clusters have electron 
counts between 14V- 4 and 15V, then only a limited number of 
topological variables must suffice for rationalizing the observed 
skeletal geometries. The PSEFT defines these topological variables 
in terms of the classes of polyhedra given in Table I. The “new 
topological electron-counting theory” utilizes many of the same 
classes of polyhedra, e.g. three connected polyhedra, capped 
polyhedra, and condensed polyhedra, but replaces the deltahedral 
class by bipyramids, pyramids, and antiprisms. Since the latter 
can generally also be described as closo, nido, and aracho del- 
tahedra, this does not introduce a major new topological variable. 
The two approaches share common assumptions, have rules that 
are interconvertible, and lead to identical conclusions for the great 
majority of carbonyl cluster compounds. 
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In the preceding paper, it is shown by Mingos that the newly 
developed topological electron counting’-3 (TEC) approach is 
related, via Euler’s theorem for polyhedra, to the widely used 
polyhedral skeletal electron pair theory4-8 (PSEPT). In this paper, 
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we wish to show that while the two approaches have some features 
in common, they also differ in many respects. A detailed discussion 
on their similarities and differences readily brings out the strengths 
and weaknesses of both approaches. 

Similarities 
There are several similarities between the TEC and the PSEPT 

methods. First, they both assume the effective atomic number 
(EAN) rule (explicit in TEC but implicit in PSEPT). Second, 
they both count the number of vertices. Third, both methods 
assume that there are three orbitals per vertex atom primarily 
responsible for cluster bonding. Fourth, both approaches assume 
that each polyhedral edge corresponds to a single-bond distance. 
(For clusters with vertex atoms that have the tendency to deviate 
from the EAN rule and /or with nonbonded or multiply bonded 
edges, it is necessary to modify both approaches accordingly.) 
Given these similarities, it is not surprising that the predictions 
are quite similar for certain types of clusters, including the del- 
tahedral and the 3-connected polyhedral clusters. 

Differences 
Though the TEC and the SEP approaches have some features 

in common (cf. prceding section), they also differ in many im- 
portant respects as outlined below: 

Merent Assumptiom. While Euler’s theorem is explicitly built 
into the TEC approach, the SEP or the PSEPT approach, in its 
simplistic beauty, does not require Euler’s relation. 

Different Theoretical Foundations. While the parameter X in 
the TEC scheme is related to the number of “missing” antibonding 
 orbital^,^ the skeletal electron pairs in the SEP approach can be 
given by the number of bonding orbitals. 

Different Methodologies. While TEC counts the number of 
faces, SEP counts the number of missing vertices and capping 
atoms. 

Different Formulas. While TEC needs only one equation (but 
with different X values) for all polyhedra, SEP requires different 
formulas for different types of polyhedra. 

Different Ranges of Applicability. The TEC theory, in its 
present form, is not applicable to two-dimensional (planar, ring) 
clusters or clusters with more open structures (e.g. some arachno 
or hypho clusters). The PSEPT readily applies to these systems. 
On the other hand, the TEC approach readily applies to high- 
nuclearity clusters such as the square-antiprismatic [COSC- 
(CO)l~]2-9 (see below), the face-to-face fused trioctahedron with 
one hidden edge [Rh11(C0)23]3-10 (X = 3 X 1 (three octahedra) 
- 1 (hidden bond) = 2; with total number of electron pairs,” via 
eq 5b of ref 1, T = 74), the bidiminished v2 trigonal-bipyramidal 
[Ni12(C0)21Hen]“12 ( X  = 2 X 1 (two octahedra) + 3 X 2 (three 
trigonal bipyramids) - 3 (three hidden bonds) = 5 ;  T = 83), the 
twinned-cuboctahedral [Rh13(C0)24HS-n]n- l3  ( X  = 1; T = 8 5 ) ,  
and the pentacapped-cubic [Rhl,(C0)2,]4-’4 ( X  = 5 for five caps, 
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T = 90). New extension of the PSEPT approach can also be 
applied to these clusters (see preceding paper and ref 8). 

Different Predictions. Even for closo deltahedra, one may 
sometimes find that the two methods differ in their predictions. 
As an example, the TEC approach3 incorrectly predicted the 
number of skeletal electron pairs of an octadecahedron (e.g. 
BllHIl2-) to be 11, in contrast to the observed value of 12, which 
is correctly predicted by the PSEPT. 

These differences in the basic assumptions, the theoretical 
foundations, the methodologies, the formulations, the ranges of 
applicabilities, and the predictive capabilities accent the strengths 
and weaknesses of both methods. 

Conclusion 
In summary, the TEC and the SEP (or its extended version, 

PSEPT) methods are similar in some respects but different in 
others. Each has its own strengths and weaknesses as discussed 
in the previous sections. The interrelationship between the two 
approaches can be simplistically summarized as 

TEC - PSEPT + Euler 

This equation recognizes the bridge-Euler’s theorem-between 
the two methods. Even so, it is an oversimplification since the 
two methods are still not equivalent under Euler’s theorem since 
they have different boundary conditions and capabilities as detailed 
in the preceding section. 

It is important to recognize that both methods can be ration- 
alized in terms of molecular orbital theory. In particular, the 
parameter X in the TEC approach is related to the number of 
“missing” antibonding cluster orbitals ( X  = E - A,  where E is 
the number of edges and A is the number of antibonding  orbital^)^ 
whereas the number of skeletal electron pairs ( B )  in the SEP 
method is given by the number of bonding cluster orbitals. In 
this context, the two approaches are interconvertible but not 
equivalent. 

The TEC approach allows for multiple electron counts for 
certain types of polyhedral clusters. This is important since metal 
cluster systems often exhibit multiple electron counts for the same 
geometry (with or without structural distortion), in contrast to 
boron hydride clusters where the electron counts are more uniquely 
defined for a given structure. For example, a trigonal-bipyramidal 
structure may have X = 0 as observed in o s ~ ( c o ) ~ 6 1 s  (72 elec- 
trons) or X = 2 as observed in [NiS(C0)12]2-16 (76 electrons). 
Even more interesting is the square-antiprismatic structure, which 
is predicted by the TEC approach to have either X = 1 as observed 
in [ C O ~ C ( C O ) ~ ~ ] ~ - ~  (114 electrons) or X = 3 as observed in 
[Ni8C(CO)16]2-17 (1 18 electrons). Where multiple electron counts 
arise for a given structure, the PSEPT approach usually agrees 
with the higher electron counts predicted by the TEC method 
except for the trigonal bipyramid and octahedron, where the 
reverse is true.I8 

It is concluded that TEC and PSEPT are alternative yet com- 
plementary ways of electron counting for polyhedral cluster 
systems. 
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(18) For example, PSEPT predicts 2(7V + 1) = 72 electrons for a closo 
trigonal-bipyramidal metal cluster and 2(7V + 3) = 118 electrons for 
an arachno square-antiprismatic metal cluster. The other electron 
counts can be derived by minor distortion from the same or other 
polyhedra. 


